Detail publikace

Variational problems in domains with cusp-points and the finite element method

ŽENÍŠEK, A.

Originální název

Variational problems in domains with cusp-points and the finite element method

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

A variational problem in a two-dimensional domain with cusp-points corresponding to a linear elliptic boundary value problem is formulated and the unique existence of its solution is proved. The corresponding finite element method using triangular finite $C^0-$elements with polynomials of the first degree is analyzed and both the convergence (under the assumptions sufficient for the existence of the exact solution) and the maximal rate of convergence O(h) are proved.

Klíčová slova

convergence, error estimates, existence and uniqueness theorem, finite element method, variational problems in bounded two-dimensional domains with cusp-points

Autoři

ŽENÍŠEK, A.

Rok RIV

2005

Vydáno

1. 1. 2005

ISSN

0163-0563

Periodikum

Numerical Functional Analysis and Optimization

Ročník

26

Číslo

4-5

Stát

Spojené státy americké

Strany od

577

Strany do

611

Strany počet

35

BibTex

@article{BUT45800,
  author="Alexander {Ženíšek}",
  title="Variational problems in domains with cusp-points and the finite element method",
  journal="Numerical Functional Analysis and Optimization",
  year="2005",
  volume="26",
  number="4-5",
  pages="35",
  issn="0163-0563"
}