Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŽENÍŠEK, A.
Originální název
Variational problems in domains with cusp-points and the finite element method
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
A variational problem in a two-dimensional domain with cusp-points corresponding to a linear elliptic boundary value problem is formulated and the unique existence of its solution is proved. The corresponding finite element method using triangular finite $C^0-$elements with polynomials of the first degree is analyzed and both the convergence (under the assumptions sufficient for the existence of the exact solution) and the maximal rate of convergence O(h) are proved.
Klíčová slova
convergence, error estimates, existence and uniqueness theorem, finite element method, variational problems in bounded two-dimensional domains with cusp-points
Autoři
Rok RIV
2005
Vydáno
1. 1. 2005
ISSN
0163-0563
Periodikum
Numerical Functional Analysis and Optimization
Ročník
26
Číslo
4-5
Stát
Spojené státy americké
Strany od
577
Strany do
611
Strany počet
35
BibTex
@article{BUT45800, author="Alexander {Ženíšek}", title="Variational problems in domains with cusp-points and the finite element method", journal="Numerical Functional Analysis and Optimization", year="2005", volume="26", number="4-5", pages="35", issn="0163-0563" }