Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Hynek Vychodil, Michal Schmidt, Petr Nepevný,Petr Pivoňka
Originální název
Generalized Predictive Control with a Non-linear Autoregressive Model
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
This paper presents a solution to computation of predictive control using non-linear auto-regressive models. For the non-linear model a neural network is used as a perspective tool for modelling of dynamic systems. However, the described approach is applicable to any type of auto-regressive model. The model is not linearized in the operating point, but in each control optimization step the model’s derivative is computed (linearization) for all points in the prediction horizon. The method can be used in real-time control. This is verified by porting the algorithm directly to the PLC.
Klíčová slova v angličtině
Neural network, Non-linear Modelling, Predictive control
Autoři
Rok RIV
2005
Vydáno
30. 3. 2005
ISSN
1109-2734
Periodikum
WSEAS Transactions on Circuits
Ročník
Číslo
3
Stát
Řecká republika
Strany od
125
Strany do
130
Strany počet
6
BibTex
@article{BUT46302, author="Hynek {Vychodil} and Michal {Schmidt} and Petr {Nepevný} and Petr {Pivoňka}", title="Generalized Predictive Control with a Non-linear Autoregressive Model", journal="WSEAS Transactions on Circuits", year="2005", volume="2005", number="3", pages="6", issn="1109-2734" }