Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VELEBA, V. PIVOŇKA, P.
Originální název
Adaptive Controller with Identification Based on Neural Network for Systems with Rapid Sampling Rates
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
In this paper ability of three identification methods to parameter estimation of the dynamic plant with great ratio of its time constant to sampling periods is compared. We concentrate our attention on dealing with adverse effects that work on real-time identification of process, especially quantization. It is shown, that a neural network applied to on-line identification process produces more stable solution in the rapid sampling domain. Taking advantage of this result, we propose here an adaptive controller with a neural network as on-line estimator. Simple heuristic synthesis based on modified Ziegler-Nichols open loop method (Z-N 1) are discussed, that deals with bad-estimated model of a plant and gives numerically stable parameters of the PID discrete controller.
Klíčová slova v angličtině
Rapid Sampling, Quantization, Neural Network, Training Set, Levenberg-Marquardt Minimization, Discrete PID Controller, RLS Identification Method
Autoři
VELEBA, V.; PIVOŇKA, P.
Rok RIV
2005
Vydáno
16. 6. 2005
ISSN
1109-2777
Periodikum
WSEAS Transactions on Systems
Ročník
4
Číslo
Stát
Spojené státy americké
Strany od
385
Strany do
388
Strany počet
BibTex
@article{BUT46303, author="Václav {Veleba} and Petr {Pivoňka}", title="Adaptive Controller with Identification Based on Neural Network for Systems with Rapid Sampling Rates", journal="WSEAS Transactions on Systems", year="2005", volume="4", number="4", pages="4", issn="1109-2777" }