Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOVÁR, M.
Originální název
On iterated de Groot dualizations of topological spaces
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology ask whether the process of taking (de Groot) duals terminate after finitely many steps with topologies that are duals of each other. The question was solved in the positive by the author in 2001. In this paper we prove a new identity for dual topologies: $\tau^d= (\tau\vee\tau^{dd})^d$ holds for every topological space $(X,\tau)$. We also present a solution of another problem that was open till now -- we give an equivalent internal characterization of those spaces for which $\tau=\tau^{dd}$ and we also characterize the spaces satisfying the identities $\tau^d=\tau^{ddd}$, $\tau=\tau^{d}$ and $\tau^d=\tau^{dd}$.
Klíčová slova
saturated set, dual topology, compactness operator
Autoři
Rok RIV
2005
Vydáno
1. 1. 2005
ISSN
0166-8641
Periodikum
Topology and its Applications
Ročník
1
Číslo
146-7
Stát
Nizozemsko
Strany od
83
Strany do
89
Strany počet
7
BibTex
@article{BUT46466, author="Martin {Kovár}", title="On iterated de Groot dualizations of topological spaces", journal="Topology and its Applications", year="2005", volume="1", number="146-7", pages="7", issn="0166-8641" }