Detail publikace

On iterated de Groot dualizations of topological spaces

KOVÁR, M.

Originální název

On iterated de Groot dualizations of topological spaces

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology ask whether the process of taking (de Groot) duals terminate after finitely many steps with topologies that are duals of each other. The question was solved in the positive by the author in 2001. In this paper we prove a new identity for dual topologies: $\tau^d= (\tau\vee\tau^{dd})^d$ holds for every topological space $(X,\tau)$. We also present a solution of another problem that was open till now -- we give an equivalent internal characterization of those spaces for which $\tau=\tau^{dd}$ and we also characterize the spaces satisfying the identities $\tau^d=\tau^{ddd}$, $\tau=\tau^{d}$ and $\tau^d=\tau^{dd}$.

Klíčová slova

saturated set, dual topology, compactness operator

Autoři

KOVÁR, M.

Rok RIV

2005

Vydáno

1. 1. 2005

ISSN

0166-8641

Periodikum

Topology and its Applications

Ročník

1

Číslo

146-7

Stát

Nizozemsko

Strany od

83

Strany do

89

Strany počet

7

BibTex

@article{BUT46466,
  author="Martin {Kovár}",
  title="On iterated de Groot dualizations of topological spaces",
  journal="Topology and its Applications",
  year="2005",
  volume="1",
  number="146-7",
  pages="7",
  issn="0166-8641"
}