Detail publikace
Optimal-order Quadratic Interpolation in Vertices of Unstructured Triangulations
DALÍK, J.
Originální název
Optimal-order Quadratic Interpolation in Vertices of Unstructured Triangulations
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The problem of quadratic interpolation of smooth functions in two variables in nodes which are vertices of unstructured triangulations is studied. Every vertex of a triangulation from an extensive class of triangulations is shown to belong to a local six-tuple of vertices in which the problem of quadratic Lagrange interpolation is solvable uniquely with an error of optimal order.
Klíčová slova
interpolation of functions in two variables; strongly regular classes of triangulations; poised sets of vertices
Autoři
DALÍK, J.
Rok RIV
2008
Vydáno
26. 11. 2008
Nakladatel
Institute of Mathematics, Academy of Sciences of the Czech Republic
Místo
Žitná 25, 115 67 Praha 1
ISSN
0862-7940
Periodikum
APPLICATIONS OF MATHEMATICS
Ročník
2008 (53)
Číslo
6
Stát
Česká republika
Strany od
547
Strany do
560
Strany počet
14
BibTex
@article{BUT47347,
author="Josef {Dalík}",
title="Optimal-order Quadratic Interpolation in Vertices of Unstructured Triangulations",
journal="APPLICATIONS OF MATHEMATICS",
year="2008",
volume="2008 (53)",
number="6",
pages="547--560",
issn="0862-7940"
}