Detail publikace

Optimal-order Quadratic Interpolation in Vertices of Unstructured Triangulations

DALÍK, J.

Originální název

Optimal-order Quadratic Interpolation in Vertices of Unstructured Triangulations

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The problem of quadratic interpolation of smooth functions in two variables in nodes which are vertices of unstructured triangulations is studied. Every vertex of a triangulation from an extensive class of triangulations is shown to belong to a local six-tuple of vertices in which the problem of quadratic Lagrange interpolation is solvable uniquely with an error of optimal order.

Klíčová slova

interpolation of functions in two variables; strongly regular classes of triangulations; poised sets of vertices

Autoři

DALÍK, J.

Rok RIV

2008

Vydáno

26. 11. 2008

Nakladatel

Institute of Mathematics, Academy of Sciences of the Czech Republic

Místo

Žitná 25, 115 67 Praha 1

ISSN

0862-7940

Periodikum

APPLICATIONS OF MATHEMATICS

Ročník

2008 (53)

Číslo

6

Stát

Česká republika

Strany od

547

Strany do

560

Strany počet

14

BibTex

@article{BUT47347,
  author="Josef {Dalík}",
  title="Optimal-order Quadratic Interpolation in Vertices of Unstructured Triangulations",
  journal="APPLICATIONS OF MATHEMATICS",
  year="2008",
  volume="2008 (53)",
  number="6",
  pages="547--560",
  issn="0862-7940"
}