Detail publikace

Boundary Value Problems for Delay Differential Systems

DIBLÍK, J. KHUSAINOV, D. RŮŽIČKOVÁ, M. BOICHUK, A.

Originální název

Boundary Value Problems for Delay Differential Systems

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

Conditions are derived of the existence of solutions of linear Fredholms boundary-value problems for systems of ordinary differential equations with constant coefficients and a single delay, assuming that these solutions satisfy the initial and boundary conditions. Utilizing a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of a criterion for the existence of solutions in a relevant space and, moreover, to the construction of a family of linearly independent solutions of such problems in a general case with the number of boundary conditions (defined by a linear vector functional) not coinciding with the number of unknowns of a differential system with a single delay.

Klíčová slova

linear Fredholms boundary-value problem, system of ordinary differential equations with constant coefficients and a single delay, delayed matrix exponential, Moore-Penrose matrices,

Autoři

DIBLÍK, J.; KHUSAINOV, D.; RŮŽIČKOVÁ, M.; BOICHUK, A.

Rok RIV

2010

Vydáno

16. 7. 2010

ISSN

1687-1839

Periodikum

Advances in Difference Equations

Ročník

2010

Číslo

1

Stát

Spojené státy americké

Strany od

1

Strany do

20

Strany počet

20

BibTex

@article{BUT47944,
  author="Josef {Diblík} and Denys {Khusainov} and Miroslava {Růžičková} and Alexander {Boichuk}",
  title="Boundary Value Problems for Delay Differential Systems",
  journal="Advances in Difference Equations",
  year="2010",
  volume="2010",
  number="1",
  pages="1--20",
  issn="1687-1839"
}