Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. KHUSAINOV, D. RŮŽIČKOVÁ, M. BOICHUK, A.
Originální název
Boundary Value Problems for Delay Differential Systems
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Conditions are derived of the existence of solutions of linear Fredholms boundary-value problems for systems of ordinary differential equations with constant coefficients and a single delay, assuming that these solutions satisfy the initial and boundary conditions. Utilizing a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of a criterion for the existence of solutions in a relevant space and, moreover, to the construction of a family of linearly independent solutions of such problems in a general case with the number of boundary conditions (defined by a linear vector functional) not coinciding with the number of unknowns of a differential system with a single delay.
Klíčová slova
linear Fredholms boundary-value problem, system of ordinary differential equations with constant coefficients and a single delay, delayed matrix exponential, Moore-Penrose matrices,
Autoři
DIBLÍK, J.; KHUSAINOV, D.; RŮŽIČKOVÁ, M.; BOICHUK, A.
Rok RIV
2010
Vydáno
16. 7. 2010
ISSN
1687-1839
Periodikum
Advances in Difference Equations
Ročník
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
20
Strany počet
BibTex
@article{BUT47944, author="Josef {Diblík} and Denys {Khusainov} and Miroslava {Růžičková} and Alexander {Boichuk}", title="Boundary Value Problems for Delay Differential Systems", journal="Advances in Difference Equations", year="2010", volume="2010", number="1", pages="1--20", issn="1687-1839" }