Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PŘINOSIL, J. SMÉKAL, Z. ESPOSITO, A.
Originální název
Combining Features for Recognizing Emotional Facial Expressions in Static Images
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This work approaches the problem of recognizing emotional facial expressions in static images focusing on three preprocessing techniques for feature extraction, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Gabor filters. These methods are commonly used for face recognition and the novelty consists in combining features provided by them in order to improve the performance of an automatic procedure for recognizing emotional facial expressions. Classification performance experiments, testing new expressions and new subjects, were performed on the Japanese Female Facial Expression (JAFFE) database using a Multi-Layer Perceptron (MLP) Neural Network as classifier. The best classification performance on new expressions was obtained combining PCA and LDA features (93% of correct recognition rate), whereas that on new subjects was obtained combining PCA, LDA and Gabor filter features (94% of correct recognition rate).
Klíčová slova
Principal Component Analysis, Linear Discriminant Analysis, Gabor filters, facial features, basic emotions.
Autoři
PŘINOSIL, J.; SMÉKAL, Z.; ESPOSITO, A.
Rok RIV
2008
Vydáno
12. 12. 2008
Nakladatel
Springer
Místo
Berlin
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Ročník
Číslo
5042
Stát
Spolková republika Německo
Strany od
59
Strany do
72
Strany počet
13
BibTex
@article{BUT49151, author="Jiří {Přinosil} and Zdeněk {Smékal} and Anna {Esposito}", title="Combining Features for Recognizing Emotional Facial Expressions in Static Images", journal="Lecture Notes in Computer Science", year="2008", volume="2008", number="5042", pages="59--72", issn="0302-9743" }