Detail publikace
Operators approximating partial derivatives at vertices of triangulations by averaging
DALÍK, J.
Originální název
Operators approximating partial derivatives at vertices of triangulations by averaging
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
We study the problem of a high-order approximation of the partial derivatives of smooth functions u in the vertices of triangulations under the assumption that the values of u are known in the vertices of the given triangulation only. An operator A computing these approximations is said to be consistent when, for every vertex a, the approximations A(u) (a) are equal to the partial derivative of u at a for all polynomials u of degree less than or equal to two. We characterize all consistent averaging operators and show that, in general, there exists no consistent approximation of the gradient of a smooth function u by averaging.
Klíčová slova
partial derivative; high-order approximation; recovery operator
Autoři
DALÍK, J.
Rok RIV
2010
Vydáno
29. 11. 2010
Nakladatel
Matematický ústav AV ČR
Místo
Praha
ISSN
0862-7959
Periodikum
Mathematica Bohemica
Ročník
2010 (135)
Číslo
4
Stát
Česká republika
Strany od
363
Strany do
372
Strany počet
10
BibTex
@article{BUT49958,
author="Josef {Dalík}",
title="Operators approximating partial derivatives at vertices of triangulations by averaging",
journal="Mathematica Bohemica",
year="2010",
volume="2010 (135)",
number="4",
pages="363--372",
issn="0862-7959"
}