Detail publikace

Operators approximating partial derivatives at vertices of triangulations by averaging

DALÍK, J.

Originální název

Operators approximating partial derivatives at vertices of triangulations by averaging

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

We study the problem of a high-order approximation of the partial derivatives of smooth functions u in the vertices of triangulations under the assumption that the values of u are known in the vertices of the given triangulation only. An operator A computing these approximations is said to be consistent when, for every vertex a, the approximations A(u) (a) are equal to the partial derivative of u at a for all polynomials u of degree less than or equal to two. We characterize all consistent averaging operators and show that, in general, there exists no consistent approximation of the gradient of a smooth function u by averaging.

Klíčová slova

partial derivative; high-order approximation; recovery operator

Autoři

DALÍK, J.

Rok RIV

2010

Vydáno

29. 11. 2010

Nakladatel

Matematický ústav AV ČR

Místo

Praha

ISSN

0862-7959

Periodikum

Mathematica Bohemica

Ročník

2010 (135)

Číslo

4

Stát

Česká republika

Strany od

363

Strany do

372

Strany počet

10

BibTex

@article{BUT49958,
  author="Josef {Dalík}",
  title="Operators approximating partial derivatives at vertices of triangulations by averaging",
  journal="Mathematica Bohemica",
  year="2010",
  volume="2010 (135)",
  number="4",
  pages="363--372",
  issn="0862-7959"
}