Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CHRASTINOVÁ, V.
Originální název
Straight Lines in Three-Dimensional Space and the Ultrahyperbolic Equation.
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The straight lines in three-dimensional vector space realize the shortest distance for various metrics. This property is reformulated in terms of the inverse problem of the calculus of variations and closely related to the ultrahyperbolic equation with four independent variables. The interrelation is useful in both directions. For instance, polynomial solutions of the ultrahyperbolic equation provide all polynomial metrics with extremals the straight lines and conversely, a~slight generalization of the Hilbert metrics leads to rather nontrivial (multi-valued or focusing) solutions of the ultrahyperbolic equation. In general, the article clarifies some well-known achievements concerning the 4th Hilbert Problem.
Klíčová slova
Inverse problem of the calculus of variations, Poincar\'{e}-Cartan form, ultrahyperbolic equation, Hilbert projective metrics, 4th Hilbert Problem.
Autoři
Rok RIV
2010
Vydáno
31. 7. 2010
Nakladatel
Krymské vědecké centrum národní akademie věd
Místo
Kiev
ISSN
1729-3901
Periodikum
Tavricheskiy vestnik informatiki i matematiki
Ročník
Číslo
1
Stát
Ukrajina
Strany od
35
Strany do
49
Strany počet
15
BibTex
@article{BUT50311, author="Veronika {Chrastinová}", title="Straight Lines in Three-Dimensional Space and the Ultrahyperbolic Equation.", journal="Tavricheskiy vestnik informatiki i matematiki", year="2010", volume="2010", number="1", pages="35--49", issn="1729-3901" }