Detail publikace

Regular variation on measure chains

VÍTOVEC, J. ŘEHÁK, P.

Originální název

Regular variation on measure chains

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

In this paper we show how the recently introduced concept of regular variation on time scales (or measure chains) is related to a Karamata type definition. We also present characterization theorems and an embedding theorem for regularly varying functions defined on suitable subsets of reals. We demonstrate that for a reasonable theory of regular variation on time scales, certain additional condition on a graininess is needed, which cannot be omitted. We establish a number of elementary properties of regularly varying functions. As an application, we study the asymptotic properties of solution to second order dynamic equations.

Klíčová slova

Regularly varying function; Regularly varying sequence; Measure chain; Time scale; Embedding theorem; Representation theorem; Second order dynamic equation; Asymptotic properties

Autoři

VÍTOVEC, J.; ŘEHÁK, P.

Rok RIV

2010

Vydáno

1. 10. 2010

ISSN

0362-546X

Periodikum

Nonlinear Analysis, Theory, Methods and Applications

Ročník

72

Číslo

1

Stát

Spojené království Velké Británie a Severního Irska

Strany od

439

Strany do

448

Strany počet

10

BibTex

@article{BUT50468,
  author="Jiří {Vítovec} and Pavel {Řehák}",
  title="Regular variation on measure chains",
  journal="Nonlinear Analysis, Theory, Methods and Applications",
  year="2010",
  volume="72",
  number="1",
  pages="439--448",
  issn="0362-546X"
}