Detail publikace
The Lie Group in Infinite Dimension
TRYHUK, V. CHRASTINOVÁ, V. DLOUHÝ, O.
Originální název
The Lie Group in Infinite Dimension
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
A Lie group acting on finite-dimensional space is generated by its infinitesimal transformations and conversely, any Lie algebra of vector fields in finite dimension generates a Lie group (the first fundamental theorem). This classical result is adjusted for the infinite-dimensional case. We prove that the (local, C^\infty smooth) action of a Lie group on infinite-dimensional space (a manifold modelled on R^\infty) may be regarded as a limit of finite-dimensional approximations and the corresponding Lie algebra of vector fields may be characterized by certain finiteness requirements. The result is applied to the theory of generalized (or higher-order) infinitesimal symmetries of differential equations.
Klíčová slova
Lie first main theorem; local one--parameter group; local Lie group; generalized infinitesimal symmetries; diffiety
Autoři
TRYHUK, V.; CHRASTINOVÁ, V.; DLOUHÝ, O.
Rok RIV
2011
Vydáno
24. 2. 2011
Nakladatel
Hindawi Publishing Corporation
Místo
USA
ISSN
1085-3375
Periodikum
Abstract and Applied Analysis
Ročník
2011
Číslo
1
Stát
Spojené státy americké
Strany od
1
Strany do
35
Strany počet
35
BibTex
@article{BUT50550,
author="Václav {Tryhuk} and Veronika {Chrastinová} and Oldřich {Dlouhý}",
title="The Lie Group in Infinite Dimension",
journal="Abstract and Applied Analysis",
year="2011",
volume="2011",
number="1",
pages="1--35",
issn="1085-3375"
}