Detail publikace

Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles

ČERNÝ, M. POKLUDA, J.

Originální název

Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Elastic response and strength of perfect crystals is calculated for triaxial loading conditions from first principles. The triaxial stress state is constituted by uniaxial tensile stress and superimposed transverse biaxial stresses. The maximum uniaxial tensile stress is evaluated as a function of the transverse stresses. Results for eight crystals of cubic metals and two orientations <110> and <111> of the primary loading axis are presented and compared with data for <100> direction of loading. Obtained results show that, within a studied range of biaxial stresses, the maximum tensile stress monotonically increases with increasing biaxial tensile stress for most of the studied metals. Within a certain range, the dependence can be mostly approximated by a linear function.

Klíčová slova

Ideal strength, ab initio calculations, triaxial loading

Autoři

ČERNÝ, M.; POKLUDA, J.

Rok RIV

2010

Vydáno

8. 11. 2010

ISSN

1098-0121

Periodikum

PHYSICAL REVIEW B

Ročník

82

Číslo

17

Stát

Spojené státy americké

Strany od

174106

Strany do

174106

Strany počet

8

BibTex

@article{BUT50658,
  author="Miroslav {Černý} and Jaroslav {Pokluda}",
  title="Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles",
  journal="PHYSICAL REVIEW B",
  year="2010",
  volume="82",
  number="17",
  pages="174106--174106",
  issn="1098-0121"
}