Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LEHKÝ, D. NOVÁK, D.
Originální název
Artificial neural network based inverse reliability analysis
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
An inverse reliability analysis is the problem to find design parameters corresponding to specified reliability levels expressed by reliability index or by theoretical failure probability. Design parameters can be deterministic or they can be associated to random variables described by statistical moments. The aim is to solve generally not only the single design parameter case but also the multiple parameter problems with given multiple reliability constraints. A new general approach of inverse reliability analysis is proposed. The inverse analysis is based on the coupling of a stochastic simulation of Monte Carlo type and an artificial neural network. A novelty of the approach is the utilization of the efficient small-sample simulation method Latin Hypercube Sampling used for the stochastic preparation of the training set.
Klíčová slova
Neural network, reliability analysis
Autoři
LEHKÝ, D.; NOVÁK, D.
Rok RIV
2010
Vydáno
10. 10. 2010
Místo
Winheim
ISSN
1617-7061
Periodikum
Proceedings in Applied Mathematics and Mechanics
Ročník
1
Číslo
10
Stát
Spojené státy americké
Strany od
187
Strany do
188
Strany počet
2
BibTex
@article{BUT50904, author="David {Lehký} and Drahomír {Novák}", title="Artificial neural network based inverse reliability analysis", journal="Proceedings in Applied Mathematics and Mechanics", year="2010", volume="1", number="10", pages="187--188", issn="1617-7061" }