Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHWARZ, J. OČENÁŠEK, J.
Originální název
Evolutionary Multiobjective Bayesian Optimization Algorithm:Experimental Study
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with the utilizing of the Bayesian optimization algorithm (BOA) for multiobjective optimization of hypergraph partitioning. The main attention is focused on the incorporation of the Pareto optimality concept. We have modified the standard algorithm BOA for one criterion optimization according to well known niching techniques to find the Pareto optimal set. This approach was compared with standard weighting techniques and the single optimization approach with the constraint. The experiments are focused mainly on the bi-objective optimization because of the visualization simplicity.
Klíčová slova
Multiobjective optimization, evolutionary algorithms, Bayesian optimization algorithm, Pareto set, niching techniques, hypergraph bisectioning
Autoři
SCHWARZ, J.; OČENÁŠEK, J.
Rok RIV
2001
Vydáno
1. 1. 2001
Místo
Hradec nad Moravicí
ISBN
80-85988-57-7
Kniha
Proceedings of the 35th Spring International Conference MOSIS'01, Vol. 1
Strany od
101
Strany do
108
Strany počet
8
URL
http://www.fit.vutbr.cz/~schwarz/PDFCLANKY/mosis01.pdf
BibTex
@inproceedings{BUT5431, author="Josef {Schwarz} and Jiří {Očenášek}", title="Evolutionary Multiobjective Bayesian Optimization Algorithm:Experimental Study", booktitle="Proceedings of the 35th Spring International Conference MOSIS'01, Vol. 1", year="2001", pages="101--108", address="Hradec nad Moravicí", isbn="80-85988-57-7", url="http://www.fit.vutbr.cz/~schwarz/PDFCLANKY/mosis01.pdf" }