Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BŘEZINA, T., EHRENBERGER, Z., KRATOCHVÍL, C.
Originální název
Reinforcement learning model: control of nonlinear and unstable processes
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Some experiences with using of the reinforcement learning model at control of nonlinear unstable processes are published in this paper. Control process is characterized by extensive depth in such cases, so the learning is computationally very demanding. We propose both using of nonlinear grid of the Q-function approximation table and also using of the learning conception “by expert observation“. Learning off (optimal) control policy is not based on blind searching a state space, but it is in progress with the help of further component, that is able to control the process. Problems are studied on active magnetic bearing one-mass model.
Klíčová slova
control algorithm, Q-learning, neural network
Autoři
Rok RIV
2002
Vydáno
14. 6. 2001
Nakladatel
Institute of Termomechanics Academy of Sience of the Czech Republic, Prague 2001
Místo
Svratka
ISBN
80-85918-64-1
Kniha
Inženýrská Mechanika 2001
Číslo edice
1
Strany od
40
Strany do
41
Strany počet
2
BibTex
@inproceedings{BUT6259, author="Tomáš {Březina} and Zdeněk {Ehrenberger} and Ctirad {Kratochvíl}", title="Reinforcement learning model: control of nonlinear and unstable processes", booktitle="Inženýrská Mechanika 2001", year="2001", number="1", pages="2", publisher="Institute of Termomechanics Academy of Sience of the Czech Republic, Prague 2001", address="Svratka", isbn="80-85918-64-1" }