Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠEDA, M.
Originální název
Stochastic Heuristic Methods for the Steiner Tree Problem in Graphs
Anglický název
Stochastické heuristické metody pro Steinerův problém v grafech
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
abchazština
Anglický abstrakt
The Steiner tree problem in graphs (SPG) is concerned with connecting a subset of vertices at minimal cost. More precisely, given an undirected connected graph G=(V,E) with vertex set V, edge set E, nonnegative weights associated with the edges, and a subset B of V (called customer vertices or terminals), the problem is to find a subgraph, T, which connects the vertices in B so that the sum of the weights of the edges in T is minimized. It is obvious that the solution is always a tree and it is called a minimal Steiner tree for B in G. Applications of the SPG are frequently found in the layout of connection structures in networks and circuit design. Their common feature is that of connecting together a set of terminals (communications sites or circuits components) by a network of minimal total length. The contribution presents an application of stochastic heuristic methods in a combination with approximate algorithms and compares their effectiveness using standard benchmarks from OR-library.
Klíčová slova v angličtině
Steiner tree problem, stochastic heuristic methods, approximation methods
Autoři
Rok RIV
2001
Vydáno
1. 7. 2001
Nakladatel
Netherlands Society for Operations Research
Místo
Rotterdam
Strany od
74
Strany do
Strany počet
1
BibTex
@{BUT69664 }