Detail publikace

A final result on the oscillation of solutions of the linear discrete delayed equation \Delta x(n)=-p(n)x(n-k) with a positive coefficient

BAŠTINEC, J. BEREZANSKY, L. DIBLÍK, J. ŠMARDA, Z.

Originální název

A final result on the oscillation of solutions of the linear discrete delayed equation \Delta x(n)=-p(n)x(n-k) with a positive coefficient

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

A linear $(k+1)$th-order discrete delayed equation $\Delta x(n)=-p(n)x(n-k)$ where $p(n)$ is a positive sequence is considered for $n\to\infty$. This equation is known to have a positive solution if the sequence $p(n)$ satisfies an inequality. Our aim is to show that, in the case of the opposite inequality for $p(n)$, all solutions of the equation considered are oscillating for $n\to\infty$.

Klíčová slova

linear discrete delayed equation, positive sequence, positive solution, opposite inequality, oscillating solution,

Autoři

BAŠTINEC, J.; BEREZANSKY, L.; DIBLÍK, J.; ŠMARDA, Z.

Rok RIV

2011

Vydáno

8. 8. 2011

ISSN

1085-3375

Periodikum

Abstract and Applied Analysis

Ročník

vol. 2011,

Číslo

Article ID 58632

Stát

Spojené státy americké

Strany od

1

Strany do

28

Strany počet

28

BibTex

@article{BUT73392,
  author="Jaromír {Baštinec} and Leonid {Berezansky} and Josef {Diblík} and Zdeněk {Šmarda}",
  title="A final result on the oscillation of solutions of the linear discrete delayed equation \Delta x(n)=-p(n)x(n-k) with a positive coefficient",
  journal="Abstract and Applied Analysis",
  year="2011",
  volume="vol. 2011,",
  number="Article ID 58632",
  pages="1--28",
  issn="1085-3375"
}