Detail publikace

Stability of ultrafine-grained structure of copper under fatigue loading

KUNZ, L. LUKÁŠ, P. PANTĚLEJEV, L. MAN, O.

Originální název

Stability of ultrafine-grained structure of copper under fatigue loading

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

Stability of microstructure of ultrafine-grained materials under cyclic loading is a crucial condition for their good fatigue performance. Changes of microstructure due to fatigue in bulk, localization of cyclic plasticity into cyclic slip bands and related development of microstructure were experimentally studied on ultrafine-grained copper prepared by equal channel angular pressing. Different reaction of ultrafine-grained structure to plastic strain-controlled and load-controlled tests was found. The different susceptibility to dynamic grain coarsening under load and plastic strain-controlled tests reported in literature cannot be explained by differences in purity or details of equal channel angular pressing. The localization of the cyclic plasticity and the development of cyclic slip bands resulting in fatigue crack initiation take place in material volumes which can be characterized as -near by oriented- regions. They correspond to the shear bands, which are characteristic for ultrafine-grained structure after equal channel angular pressing.

Klíčová slova

Fatigue of ultrafine-grained Cu, stability of ultrafine-grained structure, cyclic slip bands

Autoři

KUNZ, L.; LUKÁŠ, P.; PANTĚLEJEV, L.; MAN, O.

Rok RIV

2011

Vydáno

10. 6. 2011

Nakladatel

ELSEVIER

ISSN

1877-7058

Periodikum

Procedia Engineering

Ročník

10

Číslo

ICM11

Stát

Nizozemsko

Strany od

201

Strany do

206

Strany počet

6

BibTex

@article{BUT73820,
  author="Ludvík {Kunz} and Petr {Lukáš} and Libor {Pantělejev} and Ondřej {Man}",
  title="Stability of ultrafine-grained structure of copper under fatigue loading",
  journal="Procedia Engineering",
  year="2011",
  volume="10",
  number="ICM11",
  pages="201--206",
  issn="1877-7058"
}