Detail publikace

Semicascades with bitopological spaces formed by solution spaces of second-order linear homogeneous differential equations

CHVALINA, J. NOVÁK, M.

Originální název

Semicascades with bitopological spaces formed by solution spaces of second-order linear homogeneous differential equations

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Using the realization theorem concerning realization of centralizers of set transformations by monoids of strongly isotone selfmaps of quasi-ordered sets (motivated by natural homomorphisms or p-homomorphisms of Kripke semantics) we solve certain modifications of the classical realization problem formulated by C. Ewerett, J. von Neumann, E. Teller and S. M. Ulam in the year 1948. In particular, in the contribution there are constructed semicascades with topological and bitopological phase spaces possessing endomorphism monoids realizable by continuous closed selfmaps of disconnected or connected topological spaces and also by special transformations of bitopological spaces satisfying certain bitopological separation axioms.

Klíčová slova

bitopological space, continuous closed mapping, semicascade, solution space of a linear homogeneous differential equation of the second order, topological space

Autoři

CHVALINA, J.; NOVÁK, M.

Rok RIV

2011

Vydáno

22. 9. 2011

Nakladatel

Univerzita obrany

Místo

Brno

ISBN

978-80-7231-818-6

Kniha

7. konference o matematice a fyzice na vysokých školách technických s mezinárodní účastí. Sborník příspěvků. Část 1 - matematika.

Strany od

191

Strany do

204

Strany počet

14

BibTex

@inproceedings{BUT73875,
  author="Jan {Chvalina} and Michal {Novák}",
  title="Semicascades with bitopological spaces formed by solution spaces of second-order linear homogeneous differential equations",
  booktitle="7. konference o matematice a fyzice na vysokých školách technických s mezinárodní účastí. Sborník příspěvků. Část 1 - matematika.",
  year="2011",
  pages="191--204",
  publisher="Univerzita obrany",
  address="Brno",
  isbn="978-80-7231-818-6"
}