Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. BAŠTINCOVÁ, A. BAŠTINEC, J.
Originální název
Oscillation of solution of a linear third-order discrete delayed equation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
A linear third-order discrete delayed equation $Delta x(n)=-p(n)x(n-2)$ with a positive coefficient $p$ is considered for $n$ going to $\infty$. This equation is known to have a positive solution if $p$ fulfils an inequality. The goal of the paper is to show that, in the case of the opposite inequality for $p$, all solutions of the equation considered are oscillating for $n$ tending to $\infty$.
Klíčová slova
Discrete delayed equation, oscillating solution, positive solution, asymptotic behavior.
Autoři
DIBLÍK, J.; BAŠTINCOVÁ, A.; BAŠTINEC, J.
Rok RIV
2011
Vydáno
24. 10. 2011
Nakladatel
EPI
Místo
Kunovice
ISBN
978-80-7314-221-6
Kniha
NINTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, ICSC 2011
Strany od
95
Strany do
101
Strany počet
7
BibTex
@inproceedings{BUT74172, author="Josef {Diblík} and Alena {Baštincová} and Jaromír {Baštinec}", title="Oscillation of solution of a linear third-order discrete delayed equation", booktitle="NINTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, ICSC 2011", year="2011", pages="95--101", publisher="EPI", address="Kunovice", isbn="978-80-7314-221-6" }