Detail publikace

Strength of bcc crystals under combined shear and axial loading from first principles

ČERNÝ, M. ŠESTÁK, P. POKLUDA, J.

Originální název

Strength of bcc crystals under combined shear and axial loading from first principles

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Ab initio simulations of uniaxial tensile and compressive loading in <110> direction, <111>{110} shear and their superposition in six perfect crystals of bcc metals are performed using a plane wave code working within the framework of density functional theory. Under uniaxial compression, the crystal lattice transforms along an orthorhombic path that connects two bcc states and goes through one or two states of tetragonal symmetry. Such structural transformations determine compressive strengths of bcc crystals. On the other hand, reaching the maximum tensile stress coincides with vanishing of the shear strength in lattice planes perpendicular to the loading axis. The theoretical shear strength is found to be a decreasing (increasing) function of the applied tensile (compressive) normal stress in most studied cases. One of potential applications of this particular result is a prediction of shear instabilities in crystal lattices during tensile tests. Estimated critical tensile stresses related to shear instabilities in Mo and W under <110> tension are lower than the computed maximum tensile stresses and somewhat higher than experimental values.

Klíčová slova

theoretical strength, shear and compression, stress superposition, structural transformation, bcc metals, ab initio calculations

Autoři

ČERNÝ, M.; ŠESTÁK, P.; POKLUDA, J.

Rok RIV

2012

Vydáno

1. 4. 2012

ISSN

0927-0256

Periodikum

COMPUTATIONAL MATERIALS SCIENCE

Ročník

55

Číslo

1

Stát

Nizozemsko

Strany od

337

Strany do

343

Strany počet

7

BibTex

@article{BUT75173,
  author="Miroslav {Černý} and Petr {Šesták} and Jaroslav {Pokluda}",
  title="Strength of bcc crystals under combined shear and axial loading from first principles",
  journal="COMPUTATIONAL MATERIALS SCIENCE",
  year="2012",
  volume="55",
  number="1",
  pages="337--343",
  issn="0927-0256"
}