Detail publikace

Workspace Theorems for Regular-Controlled Grammars

MEDUNA, A. ZEMEK, P.

Originální název

Workspace Theorems for Regular-Controlled Grammars

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This paper establishes a workspace theorem in terms of regular-controlled (context-free) grammars. It proves that, if, for a regular-controlled grammar H, there is a positive integer k such that H generates every sentence y in L(H) by a derivation in which every sentential form x contains at most (k-1)|x|/k occurrences of nonterminals that are erased throughout the rest of the derivation, where |x| denotes the length of x, then the language of H is generated by a propagating regular-controlled grammar. An analogical workspace theorem is demonstrated for regular-controlled grammars with appearance checking. The paper provides an algorithm that removes all erasing rules from any regular-controlled grammar (possibly with appearance checking) that satisfies the workspace condition above without affecting the generated language. In its conclusion, the paper points out a relationship of the workspace theorems to other areas of formal language theory.

Klíčová slova

Regular-controlled context-free grammars, workspace theorems, removal of erasing rules

Autoři

MEDUNA, A.; ZEMEK, P.

Rok RIV

2011

Vydáno

12. 8. 2011

ISSN

0304-3975

Periodikum

Theoretical Computer Science

Ročník

412

Číslo

35

Stát

Nizozemsko

Strany od

4604

Strany do

4612

Strany počet

9

URL

BibTex

@article{BUT76319,
  author="Alexandr {Meduna} and Petr {Zemek}",
  title="Workspace Theorems for Regular-Controlled Grammars",
  journal="Theoretical Computer Science",
  year="2011",
  volume="412",
  number="35",
  pages="4604--4612",
  doi="10.1016/j.tcs.2011.04.042",
  issn="0304-3975",
  url="http://www.sciencedirect.com/science/article/pii/S0304397511003513"
}