Detail publikace

On a generalization of curvature homogeneus spaces

VANŽUROVÁ A. KOWALSKI O.

Originální název

On a generalization of curvature homogeneus spaces

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

K. Sekigawa proved in 1977 that a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the sense of I.M. Singer is always locally homogeneous. We deal here with the modification of the curvature homogeneity which is said to be ``of type (1,3)". We give example of a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the modified sense but still not locally homogeneous.

Klíčová slova

Riemannian manifold, curvature homogeneous manifold, locally homogeneous space

Autoři

VANŽUROVÁ A.; KOWALSKI O.

Rok RIV

2013

Vydáno

8. 4. 2013

Nakladatel

Springer Basel AG

Místo

Basel

ISSN

1422-6383

Periodikum

Results in Mathematics

Ročník

2013 (63)

Číslo

1

Stát

Švýcarská konfederace

Strany od

129

Strany do

134

Strany počet

6

BibTex

@article{BUT88931,
  author="VANŽUROVÁ A. and KOWALSKI O.",
  title="On a generalization of curvature homogeneus spaces",
  journal="Results in Mathematics",
  year="2013",
  volume="2013 (63)",
  number="1",
  pages="129--134",
  issn="1422-6383"
}