Detail publikace
On a generalization of curvature homogeneus spaces
VANŽUROVÁ A. KOWALSKI O.
Originální název
On a generalization of curvature homogeneus spaces
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
K. Sekigawa proved in 1977 that a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the sense of I.M. Singer is always locally homogeneous. We deal here with the modification of the curvature homogeneity which is said to be ``of type (1,3)". We give example of a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the modified sense but still not locally homogeneous.
Klíčová slova
Riemannian manifold, curvature homogeneous manifold, locally homogeneous space
Autoři
VANŽUROVÁ A.; KOWALSKI O.
Rok RIV
2013
Vydáno
8. 4. 2013
Nakladatel
Springer Basel AG
Místo
Basel
ISSN
1422-6383
Periodikum
Results in Mathematics
Ročník
2013 (63)
Číslo
1
Stát
Švýcarská konfederace
Strany od
129
Strany do
134
Strany počet
6
BibTex
@article{BUT88931,
author="VANŽUROVÁ A. and KOWALSKI O.",
title="On a generalization of curvature homogeneus spaces",
journal="Results in Mathematics",
year="2013",
volume="2013 (63)",
number="1",
pages="129--134",
issn="1422-6383"
}