Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MEDUNA, A. ZEMEK, P.
Originální název
Nonterminal Complexity of One-Sided Random Context Grammars
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In the present paper, we study the nonterminal complexity of one-sided random context grammars. More specifically, we prove that every recursively enumerable language can be generated by a one-sided random context grammar with no more than ten nonterminals. An analogical result holds for thirteen nonterminals in terms of these grammars with the set of left random context rules coinciding with the set of right random context rules. Furthermore, we introduce the notion of a right random context nonterminal, defined as a nonterminal that appears on the left-hand side of a right random context rule. We demonstrate how to convert any one-sided random context grammar G to an equivalent one-sided random context grammar H with two right random context nonterminals. An analogical conversion is given in terms of (1) propagating one-sided random context grammars and (2) left random context nonterminals. In the conclusion, two open problems are stated.
Klíčová slova
Formal languages, nonterminal complexity, one-sided random context grammars, random context nonterminals
Autoři
MEDUNA, A.; ZEMEK, P.
Rok RIV
2012
Vydáno
1. 2. 2012
ISSN
0001-5903
Periodikum
Acta Informatica
Ročník
49
Číslo
2
Stát
Spolková republika Německo
Strany od
55
Strany do
68
Strany počet
14
URL
http://www.springerlink.com/content/5822041380786746/
BibTex
@article{BUT91445, author="Alexandr {Meduna} and Petr {Zemek}", title="Nonterminal Complexity of One-Sided Random Context Grammars", journal="Acta Informatica", year="2012", volume="49", number="2", pages="55--68", doi="10.1007/s00236-012-0150-6", issn="0001-5903", url="http://www.springerlink.com/content/5822041380786746/" }