Detail publikace

One-Sided Forbidding Grammars and Selective Substitution Grammars

MEDUNA, A. ZEMEK, P.

Originální název

One-Sided Forbidding Grammars and Selective Substitution Grammars

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In one-sided forbidding grammars, the set of rules is divided into the set of left forbidding rules and the set of right forbidding rules. A left forbidding rule can rewrite a nonterminal if each of its forbidding symbols is absent to the left of the rewritten symbol in the current sentential form while a right forbidding rule is applied analogically except that this absence is verified to the right. Apart from this, they work like ordinary forbidding grammars. As its main result, the present paper proves that one-sided forbidding grammars are equivalent to selective substitution grammars. This equivalence is established in terms of grammars with and without erasing rules. Furthermore, the paper proves that one-sided forbidding grammars in which the set of left forbidding rules coincides with the set of right forbidding rules characterize the family of context-free languages. In the conclusion, the significance of the achieved results is discussed.

Klíčová slova

Formal language theory, regulated rewriting, one-sided forbidding grammars, selective substitution grammars, generative power

Autoři

MEDUNA, A.; ZEMEK, P.

Rok RIV

2012

Vydáno

1. 3. 2012

ISSN

0020-7160

Periodikum

International Journal of Computer Mathematics

Ročník

89

Číslo

5

Stát

Spojené království Velké Británie a Severního Irska

Strany od

586

Strany do

596

Strany počet

11

URL

BibTex

@article{BUT91446,
  author="Alexandr {Meduna} and Petr {Zemek}",
  title="One-Sided Forbidding Grammars and Selective Substitution Grammars",
  journal="International Journal of Computer Mathematics",
  year="2012",
  volume="89",
  number="5",
  pages="586--596",
  doi="10.1080/00207160.2011.642300",
  issn="0020-7160",
  url="http://www.tandfonline.com/doi/abs/10.1080/00207160.2011.642300"
}