Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MEDUNA, A. ZEMEK, P.
Originální název
One-Sided Forbidding Grammars and Selective Substitution Grammars
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In one-sided forbidding grammars, the set of rules is divided into the set of left forbidding rules and the set of right forbidding rules. A left forbidding rule can rewrite a nonterminal if each of its forbidding symbols is absent to the left of the rewritten symbol in the current sentential form while a right forbidding rule is applied analogically except that this absence is verified to the right. Apart from this, they work like ordinary forbidding grammars. As its main result, the present paper proves that one-sided forbidding grammars are equivalent to selective substitution grammars. This equivalence is established in terms of grammars with and without erasing rules. Furthermore, the paper proves that one-sided forbidding grammars in which the set of left forbidding rules coincides with the set of right forbidding rules characterize the family of context-free languages. In the conclusion, the significance of the achieved results is discussed.
Klíčová slova
Formal language theory, regulated rewriting, one-sided forbidding grammars, selective substitution grammars, generative power
Autoři
MEDUNA, A.; ZEMEK, P.
Rok RIV
2012
Vydáno
1. 3. 2012
ISSN
0020-7160
Periodikum
International Journal of Computer Mathematics
Ročník
89
Číslo
5
Stát
Spojené království Velké Británie a Severního Irska
Strany od
586
Strany do
596
Strany počet
11
URL
http://www.tandfonline.com/doi/abs/10.1080/00207160.2011.642300
BibTex
@article{BUT91446, author="Alexandr {Meduna} and Petr {Zemek}", title="One-Sided Forbidding Grammars and Selective Substitution Grammars", journal="International Journal of Computer Mathematics", year="2012", volume="89", number="5", pages="586--596", doi="10.1080/00207160.2011.642300", issn="0020-7160", url="http://www.tandfonline.com/doi/abs/10.1080/00207160.2011.642300" }