Detail publikace

Region Dependent Linear Transforms in Multilingual Speech Recognition

KARAFIÁT, M. JANDA, M. ČERNOCKÝ, J. BURGET, L.

Originální název

Region Dependent Linear Transforms in Multilingual Speech Recognition

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

In today's speech recognition systems, linear or nonlinear transformationsare usually applied to post-process speech features forminginput to HMM based acoustic models. In this work, we experimentwith three popular transforms: HLDA,MPE-HLDA and Region DependentLinear Transforms (RDLT), which are trained jointly withthe acoustic model to extract maximum of the discriminative informationfrom the raw features and to represent it in a form suitablefor the following GMM-HMM based acoustic model. We focus onmulti-lingual environments, where limited resources are availablefor training recognizers of many languages. Using data from GlobalPhonedatabase, we show that, under such restrictive conditions,the feature transformations can be advantageously shared across languagesand robustly trained using data from several languages.

Klíčová slova

HLDA, Region Dependent Transforms, MinimumPhone Error, fMPE, multilingual speech recognition

Autoři

KARAFIÁT, M.; JANDA, M.; ČERNOCKÝ, J.; BURGET, L.

Rok RIV

2012

Vydáno

25. 3. 2012

Nakladatel

IEEE Signal Processing Society

Místo

Kyoto

ISBN

978-1-4673-0044-5

Kniha

Proc. International Conference on Acoustics, Speech, and Signal Processing 2012

Strany od

4885

Strany do

4888

Strany počet

4

URL

BibTex

@inproceedings{BUT91480,
  author="Martin {Karafiát} and Miloš {Janda} and Jan {Černocký} and Lukáš {Burget}",
  title="Region Dependent Linear Transforms in Multilingual Speech Recognition",
  booktitle="Proc. International Conference on Acoustics, Speech, and Signal Processing 2012",
  year="2012",
  pages="4885--4888",
  publisher="IEEE Signal Processing Society",
  address="Kyoto",
  doi="10.1109/ICASSP.2012.6289014",
  isbn="978-1-4673-0044-5",
  url="http://www.fit.vutbr.cz/research/groups/speech/publi/2012/karafiat_icassp2012_0004885.pdf"
}