Detail publikace

Entropy of fractal systems

ZMEŠKAL, O.

Originální název

Entropy of fractal systems

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The Kolmogorov entropy is an important measure which describes the degree of chaoticity of systems. It gives the average rate of information loss about a position of the phase point on the attractor. Numerically, the Kolmogorov entropy can be estimated as the Rényi entropy. A special case of Rényi entropy is the information theory of Shannon entropy. The product of Shannon entropy and Boltzmann constant is the thermodynamic entropy. Fractal structures are characterized by their fractal dimension. There exists an infinite family of fractal dimensions. A generalized fractal dimension can be defined in an E-dimensional space. The Rényi entropy and generalized fractal dimension are connected by known relation.

Klíčová slova

Fractal physics, Fractal geometry, Fractal dimension, Fractal measure, Kolmogorov entropy, Rényi entropy, Shannon entropy, Thermodynamic entropy

Autoři

ZMEŠKAL, O.

Rok RIV

2012

Vydáno

3. 9. 2012

Nakladatel

Springer

Místo

New York, USA

ISSN

2194-5357

Periodikum

Advances in Intelligent Systems and Computing

Ročník

192

Číslo

1

Stát

Švýcarská konfederace

Strany od

25

Strany do

26

Strany počet

2

BibTex

@article{BUT93924,
  author="Oldřich {Zmeškal}",
  title="Entropy of fractal systems",
  journal="Advances in Intelligent Systems and Computing",
  year="2012",
  volume="192",
  number="1",
  pages="25--26",
  issn="2194-5357"
}