Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ČERNÝ, M. ŘEHÁK, P. UMENO, Y. POKLUDA, J.
Originální název
Stability and strength of covalent crystals under uniaxial and triaxial loading from first principles
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Response of three covalent crystals with a diamond lattice (C, Si and Ge) to uniaxial and a special triaxial (generally nonhydrostatic) loading is calculated from first principles. The lattice deformations are described in terms of variations of bond lengths and angles. The triaxial stress state is simulated as a superposition of axial tension or compression and transverse (both tensile and compressive) biaxial stresses. The biaxial stresses are considered to be adjustable parameters and the theoretical strengths in tension and compression along <100>, <110>, <111> crystallographic directions are calculated as their functions. The obtained results revealed that the compressive strengths are, consistently to fcc metals, almost linear functions of the transverse stresses. Tensile transverse stresses lower the compressive strength and vice versa. The tensile strengths, however, are not monotonic functions of the transverse biaxial stresses since they mostly exhibit maxima for certain values of the transverse stresses (e.g., tensile for<100> and <110> loading of Si and Ge or compressive for <100> loading of C).
Klíčová slova
theoretical strength, triaxial loading, diamond structure, ab initio calculations
Autoři
ČERNÝ, M.; ŘEHÁK, P.; UMENO, Y.; POKLUDA, J.
Rok RIV
2013
Vydáno
23. 1. 2013
ISSN
0953-8984
Periodikum
Journal of Physics: Condensed Matter
Ročník
25
Číslo
3
Stát
Spojené království Velké Británie a Severního Irska
Strany od
035401
Strany do
Strany počet
8
BibTex
@article{BUT95577, author="Miroslav {Černý} and Petr {Řehák} and Yoshitaka {Umeno} and Jaroslav {Pokluda}", title="Stability and strength of covalent crystals under uniaxial and triaxial loading from first principles", journal="Journal of Physics: Condensed Matter", year="2013", volume="25", number="3", pages="035401--035401", doi="10.1088/0953-8984/25/3/035401", issn="0953-8984" }