Detail produktu

Scalar Potential of a Vector Field

HLAVIČKOVÁ, I. PIDDUBNA, G.

Typ produktu

software

Abstrakt

A scalar potential of a vector field F is a scalar function f such that grad(f)=F. The potential of a vector field is in a close relationship with the independence of the oriented line integral on the integration path. Namely, if F is a conservative (potential) vector field, i.e. if it has a potential, then the line integral of F does not depend on the integration path but only on the end points of the line. This means that the work done when moving a particle from a point A to a point B is independent of the path chosen. A vector field is conservative if it has a zero rotation. The potential has a great importance in the description of electric and magnetic fields. With help of our program, the scalar vector potential of a given vector field F is computed. The vector field can be two or three-dimensional. First, it is verified that F is conservative. Then the potential is found. Finally, the user can evaluate line integrals of F with help of the potential.

Klíčová slova

vector field potential, line integral

Datum vzniku

30. 6. 2012

Umístění

Server UMAT FEKT VUT v Brně, Technická 8, 616 00 Brno

Možnosti využití

K využití výsledku jiným subjektem je vždy nutné nabytí licence

Licenční poplatek

Poskytovatel licence na výsledek nepožaduje licenční poplatek

www