Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PŮŽA, B. HAKL, R. DOMOSHNITSKY, A.
Originální název
On the dimension of the solutions set to the homogeneous linear functional differential equation of the first order
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Consider the homogeneous equation $$ u'(t)=\ell (u)(t)\qquad \mbox {for a.e. } t\in [a,b] $$ where $\ell \colon C([a,b];\Bbb R)\to L([a,b];\Bbb R)$ is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equation considered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations.
Klíčová slova
functional differential equation; boundary value problem; differential inequality; solution set
Autoři
PŮŽA, B.; HAKL, R.; DOMOSHNITSKY, A.
Rok RIV
2012
Vydáno
31. 12. 2012
Nakladatel
Institute of Mathematics ASCR
Místo
Praha
ISSN
0011-4642
Periodikum
Czechoslovak Mathematical Journal
Ročník
62
Číslo
4
Stát
Česká republika
Strany od
1033
Strany do
1053
Strany počet
20
BibTex
@article{BUT97937, author="Bedřich {Půža} and Robert {Hakl} and Alexander {Domoshnitsky}", title="On the dimension of the solutions set to the homogeneous linear functional differential equation of the first order", journal="Czechoslovak Mathematical Journal", year="2012", volume="62", number="4", pages="1033--1053", issn="0011-4642" }