Detail publikace

On the dimension of the solutions set to the homogeneous linear functional differential equation of the first order

PŮŽA, B. HAKL, R. DOMOSHNITSKY, A.

Originální název

On the dimension of the solutions set to the homogeneous linear functional differential equation of the first order

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

Consider the homogeneous equation $$ u'(t)=\ell (u)(t)\qquad \mbox {for a.e. } t\in [a,b] $$ where $\ell \colon C([a,b];\Bbb R)\to L([a,b];\Bbb R)$ is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equation considered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations.

Klíčová slova

functional differential equation; boundary value problem; differential inequality; solution set

Autoři

PŮŽA, B.; HAKL, R.; DOMOSHNITSKY, A.

Rok RIV

2012

Vydáno

31. 12. 2012

Nakladatel

Institute of Mathematics ASCR

Místo

Praha

ISSN

0011-4642

Periodikum

Czechoslovak Mathematical Journal

Ročník

62

Číslo

4

Stát

Česká republika

Strany od

1033

Strany do

1053

Strany počet

20

BibTex

@article{BUT97937,
  author="Bedřich {Půža} and Robert {Hakl} and Alexander {Domoshnitsky}",
  title="On the dimension of the solutions set to the homogeneous linear functional differential equation of the first order",
  journal="Czechoslovak Mathematical Journal",
  year="2012",
  volume="62",
  number="4",
  pages="1033--1053",
  issn="0011-4642"
}