Detail publikace
Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements
DALÍK, J. VALENTA, V.
Originální název
Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
An averaging method for the second-order approximation of the values of the gradient of an arbitrary smooth function u = u(x1, x2) at the vertices of a regular triangulation Th composed both of rectangles and triangles is presented. The method assumes that only the interpolant \Pi_h[u] of u in the finite element space of the linear triangular and bilinear rectangular finite elements from Th is known. A complete analysis of this method is an extension of the complete analysis concerning the finite element spaces of linear triangular elements from [Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619-644]. The second-order approximation of the gradient is extended from the vertices to the whole domain and applied to the a posteriori error estimates of the finite element solutions of the planar elliptic boundary-value problems of second order. Numerical illustrations of the accuracy of the averaging method and of the quality of the a posteriori error estimates are also presented.
Klíčová slova
A posteriori error estimator; Adaptive solution of elliptic differential problems in 2D; Averaging partial derivatives; Linear triangular and bilinear rectangular finite element; Nonobtuse regular triangulation
Autoři
DALÍK, J.; VALENTA, V.
Rok RIV
2013
Vydáno
1. 1. 2013
Nakladatel
VERSITA
Místo
Velká Británie
ISSN
1895-1074
Periodikum
CENT EUR J MATH
Ročník
4
Číslo
11
Stát
Polská republika
Strany od
597
Strany do
608
Strany počet
12
BibTex
@article{BUT98047,
author="Josef {Dalík} and Václav {Valenta}",
title="Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements",
journal="CENT EUR J MATH",
year="2013",
volume="4",
number="11",
pages="597--608",
issn="1895-1074"
}