Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PROFANT, T. KLUSÁK, J. ŠEVEČEK, O. KOTOUL, M. HRSTKA, M. MARCIÁN, P.
Originální název
An effect of the first non-singular term of the Williams asymptotic expansion to the stability of the bi-material orthotropic notch
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The domain of the generalized stress intensity factors dominance ahead of the notch tip can be rather small with respect to the length of the perturbing cracks initiated from the tip of the notch. Thus the non-singular terms of the stress asymptotic expansion at the notch tip would play an important role in the notch tip stability. Following the procedures dealing with complex potential theory and path-independent two-state integrals developed for the singular stress analysis of the stress concentrators one can evaluate their magnitude and include them to the energy release rate of the preexisting crack initiated from the notch tip applying the matched asymptotic procedure. The presented analysis should lead to better understanding of the notch stability process and precising of the notch stability criteria.
Klíčová slova
Orthotropic bi-material notch; two-state integral; psi-integral; stress non-singular terms; T-stress; matched asymptotic expansion
Autoři
PROFANT, T.; KLUSÁK, J.; ŠEVEČEK, O.; KOTOUL, M.; HRSTKA, M.; MARCIÁN, P.
Rok RIV
2014
Vydáno
6. 1. 2014
Nakladatel
Trans Tech Publications
Místo
Switzerland
ISSN
1013-9826
Periodikum
Key Engineering Materials (print)
Ročník
592-593
Číslo
Stát
Švýcarská konfederace
Strany od
745
Strany do
748
Strany počet
4
BibTex
@inproceedings{BUT102806, author="Tomáš {Profant} and Jan {Klusák} and Oldřich {Ševeček} and Michal {Kotoul} and Miroslav {Hrstka} and Petr {Marcián}", title="An effect of the first non-singular term of the Williams asymptotic expansion to the stability of the bi-material orthotropic notch", booktitle="Materials Structure & Micromechanics of Fracture VII", year="2014", journal="Key Engineering Materials (print)", volume="592-593", number="2014", pages="745--748", publisher="Trans Tech Publications", address="Switzerland", doi="10.4028/www.scientific.net/KEM.592-593.745", issn="1013-9826" }