Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HERMAN, D. ORSÁG, F.
Originální název
Exploring k-PSO Algorithm for Clustering
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Cluster analysis is a very popular approach to fully automatic search for patterns, data concepts, groups and clusters. It simplifies data representations and thus plays an important role in the process of knowledge acquisition. Data mining tasks require fast and accurate partition of data with many attributes. This requires new approach, which could deal better with these features. Methods based on the swarm intelligence present such approach to the cluster analysis. This article is a brief introduction to the optimization algorithms inspired by the natural world. It shows how these algorithms can be used in the cluster analysis and describes several up-to-date hybrid techniques combining PSO and k-means. Moreover, conceptually new hybrid algorithm based on the PSO and k-means is introduced and its efficiency and robustness are compared to the other algorithms using several datasets.
Klíčová slova
Swarm Intelligence, Clustering, SI, k-means, FCM, Exploring k-PSO
Autoři
HERMAN, D.; ORSÁG, F.
Rok RIV
2013
Vydáno
13. 2. 2013
Nakladatel
ACTA Press
Místo
Innsbruck
ISBN
978-0-88986-943-1
Kniha
Proceedings of the IASTED International Conference Artificial Intelligence and Applications (AIA 2013)
Strany od
161
Strany do
168
Strany počet
8
BibTex
@inproceedings{BUT103428, author="David {Herman} and Filip {Orság}", title="Exploring k-PSO Algorithm for Clustering", booktitle="Proceedings of the IASTED International Conference Artificial Intelligence and Applications (AIA 2013)", year="2013", pages="161--168", publisher="ACTA Press", address="Innsbruck", isbn="978-0-88986-943-1" }