Detail publikace

Unbounded solutions of the equation $\dot y(t)=\sum_{i=1}^{n}\beta_{i}$ (t)\left[y(t-\delta_{i})-y(t-\tau_{i})\right]$

DIBLÍK, J. RŮŽIČKOVÁ, M. CHUPÁČ, R.

Originální název

Unbounded solutions of the equation $\dot y(t)=\sum_{i=1}^{n}\beta_{i}$ (t)\left[y(t-\delta_{i})-y(t-\tau_{i})\right]$

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

Asymptotic behavior of solutions of first-order differential equation with deviating arguments in the form $\dot y(t)=\sum_{i=1}^{n}\beta_{i}(t)\left[y(t-\delta_{i})-y(t-\tau_{i})\right]$ is discussed for $t\to\infty$. A criterion for representing solutions in exponential form is proved. Inequalities for solution estimation are given. Sufficient conditions for the existence of unbounded solutions are derived. A relevant illustrative example is given as well. Known results are discussed and compared.

Klíčová slova

Unbounded solution; exponential solution; discrete delays

Autoři

DIBLÍK, J.; RŮŽIČKOVÁ, M.; CHUPÁČ, R.

Rok RIV

2013

Vydáno

3. 12. 2013

Nakladatel

Elsevier Science Publishing Co

Místo

USA

ISSN

0096-3003

Periodikum

APPLIED MATHEMATICS AND COMPUTATION

Ročník

2013

Číslo

221

Stát

Spojené státy americké

Strany od

610

Strany do

619

Strany počet

10

BibTex

@article{BUT103938,
  author="Josef {Diblík} and Miroslava {Růžičková} and Radoslav {Chupáč}",
  title="Unbounded solutions of the equation $\dot y(t)=\sum_{i=1}^{n}\beta_{i}$ (t)\left[y(t-\delta_{i})-y(t-\tau_{i})\right]$",
  journal="APPLIED MATHEMATICS AND COMPUTATION",
  year="2013",
  volume="2013",
  number="221",
  pages="610--619",
  issn="0096-3003"
}