Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
Convenient adjacencies for structuring the digital plane
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We study graphs with the vertex set Z^2 which are subgraphs of the 8- adjacency graph and have the property that certain natural cycles in these graphs are Jordan curves, i.e., separate Z^2 into exactly two connected components. Of these graphs, we determine the minimal ones and study their quotient graphs. The results obtained are used to prove digital analogues of the Jordan curve theorem for several graphs on Z^2. Thus, these graphs are shown to provide background structures on the digital plane Z^2 convenient for studying digital images.
Klíčová slova
Simple graph, quotient graph, connected set, digital plane, Jordan curve
Autoři
Rok RIV
2015
Vydáno
15. 9. 2015
Nakladatel
Springer
ISSN
1012-2443
Periodikum
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE
Ročník
75 (2015)
Číslo
1
Stát
Švýcarská konfederace
Strany od
69
Strany do
88
Strany počet
10
BibTex
@article{BUT104915, author="Josef {Šlapal}", title="Convenient adjacencies for structuring the digital plane", journal="ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE", year="2015", volume="75 (2015)", number="1", pages="69--88", doi="10.1007/s10472-013-9394-2", issn="1012-2443" }