Detail publikace

Convenient adjacencies for structuring the digital plane

ŠLAPAL, J.

Originální název

Convenient adjacencies for structuring the digital plane

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We study graphs with the vertex set Z^2 which are subgraphs of the 8- adjacency graph and have the property that certain natural cycles in these graphs are Jordan curves, i.e., separate Z^2 into exactly two connected components. Of these graphs, we determine the minimal ones and study their quotient graphs. The results obtained are used to prove digital analogues of the Jordan curve theorem for several graphs on Z^2. Thus, these graphs are shown to provide background structures on the digital plane Z^2 convenient for studying digital images.

Klíčová slova

Simple graph, quotient graph, connected set, digital plane, Jordan curve

Autoři

ŠLAPAL, J.

Rok RIV

2015

Vydáno

15. 9. 2015

Nakladatel

Springer

ISSN

1012-2443

Periodikum

ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE

Ročník

75 (2015)

Číslo

1

Stát

Švýcarská konfederace

Strany od

69

Strany do

88

Strany počet

10

BibTex

@article{BUT104915,
  author="Josef {Šlapal}",
  title="Convenient adjacencies for structuring the digital plane",
  journal="ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE",
  year="2015",
  volume="75 (2015)",
  number="1",
  pages="69--88",
  doi="10.1007/s10472-013-9394-2",
  issn="1012-2443"
}