Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NECHVÁTAL, L.
Originální název
On asymptotics of discrete Mittag-Leffler function
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional $h$-difference operators) and describe its asymptotics. Here, we shall employ our recent results on stability and asymptotics of solutions to the mentioned equation.
Klíčová slova
discrete Mittag-Leffler function, fractional difference equation, asymptotics, backward h-Laplace transform
Autoři
Rok RIV
2014
Vydáno
31. 12. 2014
Nakladatel
MÚ AV ČR
Místo
Praha
ISSN
0862-7959
Periodikum
Mathematica Bohemica
Ročník
139
Číslo
4
Stát
Česká republika
Strany od
667
Strany do
675
Strany počet
9
BibTex
@article{BUT113253, author="Luděk {Nechvátal}", title="On asymptotics of discrete Mittag-Leffler function", journal="Mathematica Bohemica", year="2014", volume="139", number="4", pages="667--675", issn="0862-7959" }