Detail publikace
Finite element modelling of human vocal folds self-oscillation
ŠVANCARA, P. HORÁČEK, J. ŠVEC, J. G.
Originální název
Finite element modelling of human vocal folds self-oscillation
Typ
abstrakt
Jazyk
angličtina
Originální abstrakt
The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics in the simplified vocal tract models. The effect of vocal-fold layers thickness and material properties on simulated videokymographic (VKG) images and produced sound spectra is analyzed. The 3D vocal tract models of the acoustic spaces for Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). The fluid-structure interaction is solved using explicit coupling scheme with separated solvers for structure and fluid domain. For modelling the acoustic wave propagation, compressible Navier-Stokes equations were utilized. The developed FE model can be used to numerically simulate pathological changes in the vocal-fold tissue and their influence on the voice production.
Klíčová slova
biomechanics of voice, fluid-structure-acoustic interaction, finite element method, simulation of phonation, videokymography
Autoři
ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. G.
Vydáno
10. 4. 2014
Nakladatel
National Center for Voice and Speech, University of Utah
Místo
Salt Lake City, USA
Strany od
83
Strany do
83
Strany počet
1
BibTex
@misc{BUT113331,
author="Pavel {Švancara} and Jaromír {Horáček} and Jan G. {Švec}",
title="Finite element modelling of human vocal folds self-oscillation",
booktitle="Proceedings of The 9th Internationl Conference on Voice Physiology and Biomechanics 2014",
year="2014",
pages="83--83",
publisher="National Center for Voice and Speech, University of Utah",
address="Salt Lake City, USA",
note="abstract"
}