Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOVÁR, M.
Originální název
The de Groot dual for general collections of sets
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
A topology is de Groot dual of another topology, if it has a closed base consisting of all its compact saturated sets. Until 2001 it was an unsolved problem of J. Lawson and M. Mislove whether the sequence of iterated dualizations of a topological space is finite. In this paper we generalize the author's original construction to an arbitrary family instead of a topology. Among other results we prove that for any family $\C\subseteq 2^X$ it holds $\C^{dd}=\C^{dddd}$. We also show similar identities for some other similar and topology-related structures.
Klíčová slova v angličtině
saturated set, dual topology, compactness operator
Autoři
Rok RIV
2004
Vydáno
14. 10. 2004
Nakladatel
IBFI Schloss Dagstuhl
Místo
Schloss Dagstuhl, Deutschland
Strany od
1
Strany do
8
Strany počet
URL
ftp://ftp.dagstuhl.de/pub/Proceedings/04/04351/04351.KovarMartin5.Paper!.pdf
BibTex
@inproceedings{BUT11708, author="Martin {Kovár}", title="The de Groot dual for general collections of sets", booktitle="Proceedings of the Dagstuhl Seminar 04351 - Spatial Representation: Discrete vs. Continuous Computational Models", year="2004", volume="1", number="04351", pages="8", publisher="IBFI Schloss Dagstuhl", address="Schloss Dagstuhl, Deutschland", url="ftp://ftp.dagstuhl.de/pub/Proceedings/04/04351/04351.KovarMartin5.Paper!.pdf" }