Detail publikace

On explicit stability conditions for a linear fractional difference system

ČERMÁK, J. NECHVÁTAL, L. GYŐRI, I.

Originální název

On explicit stability conditions for a linear fractional difference system

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The paper describes the stability area for an autonomous difference system with the Caputo and Riemann-Liouville forward difference operator whose order is between 0 and 1. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons, consequences and illustrated examples are presented as well.

Klíčová slova

fractional-order difference system; Caputo difference operator; Riemann-Liouville difference operator; asymptotic stability

Autoři

ČERMÁK, J.; NECHVÁTAL, L.; GYŐRI, I.

Rok RIV

2015

Vydáno

30. 6. 2015

Nakladatel

Walter de Gruyter GmbH, Berlin/Boston

Místo

Berlin, Germany

ISSN

1311-0454

Periodikum

Fractional Calculus and Applied Analysis

Ročník

18

Číslo

3

Stát

Bulharská republika

Strany od

651

Strany do

672

Strany počet

22

URL

BibTex

@article{BUT117956,
  author="Jan {Čermák} and Luděk {Nechvátal} and István {Győri}",
  title="On explicit stability conditions for a linear fractional difference system",
  journal="Fractional Calculus and Applied Analysis",
  year="2015",
  volume="18",
  number="3",
  pages="651--672",
  doi="10.1515/fca-2015-0040",
  issn="1311-0454",
  url="http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml"
}