Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MALENOVSKÝ, E. POCHYLÝ, F.
Originální název
Computational Modelling of Frequency Dependent Additional Effects During Fluid Film Interaction with Structures
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This contribution is focused on the interaction of a rigid body with a thin fluid layer. Some technical applications are for example: long and short, cavitating or noncavitating journal bearings. The governing equations for this analysis are the Navier Stokes equation, and the continuity and boundary conditions. The theoretical basis of a new approach to the analysis of dynamic behavior of nonstationary motion in time and frequency domains is presented. This totally new approach is based on separating the shaft and liquid layer from each other. It is possible to establish, using this separation, a database of additional effects of fluid film for a single given shaft parameter, which can be the shaft center position. The Bézier body is used for approximating the geometrical configuration as well as the velocities and pressures. The governing equations for both the net method and method of control volumes are presented. Curvilinear co-ordinates are used for describing the geometrical configuration and perpendicular co-ordinates are used for solving velocities and pressures.
Klíčová slova
Navier-Stokes equation computational modelling, nonstationar analysis, journal bearings, additional mass, damping, stiffness
Autoři
MALENOVSKÝ, E.; POCHYLÝ, F.
Rok RIV
2004
Vydáno
1. 9. 2004
Místo
Mechanical Engineering, London
ISBN
1-86058-447-0
Kniha
Vibration in Rotating Machinery
Číslo edice
1
Strany od
173
Strany do
183
Strany počet
11
BibTex
@inproceedings{BUT12167, author="Eduard {Malenovský} and František {Pochylý}", title="Computational Modelling of Frequency Dependent Additional Effects During Fluid Film Interaction with Structures", booktitle="Vibration in Rotating Machinery", year="2004", number="1", pages="11", address="Mechanical Engineering, London", isbn="1-86058-447-0" }