Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
Alexandroff pretopologies for structuring the digital plane
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We explore the possibility of employing Alexandroff pretopologies as structures on the digital plane Z^2 convenient for the study of geometric and topological properties of digital images. These pretopologies are known to be in one-to-one correspondence with reflexive binary relations so that graph-theoretic methods may be used when investigating them. We discuss such Alexandroff pretopologies on Z2 that possess a rich variety of digital Jordan curves obtained as circuits in a natural graph with the vertex set Z2. Of these pretopologies, we focus on the minimal ones and study their quotient pretopologies on Z2 which are shown to allow for various digital Jordan curve theorems. We also develop a method for identifying Jordan curves in the minimal pretopological spaces by using Jordan curves in one of their quotient spaces. Using this method, we conclude the paper with proving a digital Jordan curve theorem for the minimal pretopologies.
Klíčová slova
Digital plane, Jordan curve, Alexandroff pretopology, quotient pretopology
Autoři
Vydáno
15. 1. 2017
Nakladatel
Elsevier
Místo
Nizozemsko
ISSN
0166-218X
Periodikum
Discrete Applied Mathematics
Ročník
216
Číslo
2
Stát
Strany od
323
Strany do
334
Strany počet
12
URL
https://ac.els-cdn.com/S0166218X16302670/1-s2.0-S0166218X16302670-main.pdf?_tid=b5db0aee-e1e1-11e7-b51a-00000aab0f02&acdnat=1513374708_82e3d74b75420ea8adca800b18dc4e43
BibTex
@article{BUT125480, author="Josef {Šlapal}", title="Alexandroff pretopologies for structuring the digital plane", journal="Discrete Applied Mathematics", year="2017", volume="216", number="2", pages="323--334", doi="10.1016/j.dam.2016.06.002", issn="0166-218X", url="https://ac.els-cdn.com/S0166218X16302670/1-s2.0-S0166218X16302670-main.pdf?_tid=b5db0aee-e1e1-11e7-b51a-00000aab0f02&acdnat=1513374708_82e3d74b75420ea8adca800b18dc4e43" }