Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MEHTA, G. DUTTA, M. BURGET, R. POVODA, L.
Originální název
Biometric Data Security Using Fractional Fourier Transform and Chaotic Theory
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In the recent past, biometrics have found an extensive use in the field of data security and access control to maintain data confidentiality and restrict unauthorised access. As data theft cases are increasing the need of securing biometric data is a major concern. This paper presents an efficient and lossless encryption scheme based on transformation and chaotic domain to achieve high level of data confidentiality and security. Unlike conventional methods, the proposed scheme uses the substitution and permutation in reverse order using different domains to provide adequate security level. Experimental results shows that proposed method reduces the peak signal to noise ratio significantly making the proposed algorithm resistant to perceptual attacks. Also an increased key space is achieved due to the use of transformation domain in conjunction with spatial domain. Experimental results also show that proposed method is highly resistant to statistical and crypt analytical attacks which make it suitable for real time applications.
Klíčová slova
Biometrics, Discrete Wavelet Transform, Fractional Fourier Transform, Skew Tent Map, Arnold Transform
Autoři
MEHTA, G.; DUTTA, M.; BURGET, R.; POVODA, L.
Vydáno
27. 6. 2016
Místo
Vídeň
ISBN
978-1-5090-1287-9
Kniha
Proceedings of the 39th International Conference on Telecommunication and Signal Processing, TSP 2016
Strany od
533
Strany do
537
Strany počet
5
URL
https://ieeexplore.ieee.org/document/7760937
BibTex
@inproceedings{BUT127868, author="Garima {Mehta} and Malay Kishore {Dutta} and Radim {Burget} and Lukáš {Povoda}", title="Biometric Data Security Using Fractional Fourier Transform and Chaotic Theory", booktitle="Proceedings of the 39th International Conference on Telecommunication and Signal Processing, TSP 2016", year="2016", pages="533--537", address="Vídeň", doi="10.1109/TSP.2016.7760937", isbn="978-1-5090-1287-9", url="https://ieeexplore.ieee.org/document/7760937" }