Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LEHKÝ, D. NOVÁK, D. SLOWIK, O. ŠOMODÍKOVÁ, M. CAO, M.
Originální název
Soft Computing and Stochastic Optimization Approaches for Uncertain Design Parameters Determination of Post-Tensioned Composite Bridge
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
To achieve desired level of reliability in limit state design is generally not an easy task, especially when probabilistic analysis including detailed description of uncertainties is utilized. In general, engineering design belongs to the category of inverse problems with the aim to determine selected design parameters. Inn the paper two alternative approaches are employed for finding design parameters of a single-span post-tensioned composite bridge. The first approach is based on utilization of artificial neural network in combination with small-sample simulation technique and genetic algorithms. The second approach considers inverse problem as reliability-based optimization task using small-sample double-loop method.
Klíčová slova
Reliability-based design, inverse analysis, artificial neural network, double-loop optimization, post-tensioned bridge, reliability index, latin hypercube sampling
Autoři
LEHKÝ, D.; NOVÁK, D.; SLOWIK, O.; ŠOMODÍKOVÁ, M.; CAO, M.
Vydáno
28. 5. 2016
Místo
Shanghai, China
ISBN
978-7-5608-6303-0
Kniha
Structural Reliability and its Applications (APSSRA ´6)
Strany od
624
Strany do
629
Strany počet
6
BibTex
@inproceedings{BUT128479, author="David {Lehký} and Drahomír {Novák} and Ondřej {Slowik} and Martina {Sadílková Šomodíková} and Maosen {Cao}", title="Soft Computing and Stochastic Optimization Approaches for Uncertain Design Parameters Determination of Post-Tensioned Composite Bridge", booktitle="Structural Reliability and its Applications (APSSRA ´6)", year="2016", pages="624--629", address="Shanghai, China", isbn="978-7-5608-6303-0" }