Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VIET-THANH, P. SAJAD, J. VOLOS, C. GÖTTHANS, T. WANG, X. VO HOANG, D.
Originální název
A chaotic system with rounded square equilibrium and with no-equilibrium
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Chaotic systems with an infinite number of equilibrium points and chaotic ones without equilibrium have received a significant attention in the last years because they belong to a class of systems with “hidden attractor”. In this work, we introduce a three-dimensional chaotic system displaying both hidden attractors with infinite equilibria and hidden attractors without equilibrium. Surprisingly, when the system exhibits hidden attractors with infinite equilibria, it has a rounded square curve of equilibrium points. Dynamical properties of the new system are analyzed through equilibrium points, phase portraits, bifurcation diagram, and maximal Lyapunov exponents. Furthermore, circuit implementation of the system is presented showing another approach to study such system as well as its feasibility.
Klíčová slova
Chaos; Hidden attractor; Equilibrium; Electronic circuit
Autoři
VIET-THANH, P.; SAJAD, J.; VOLOS, C.; GÖTTHANS, T.; WANG, X.; VO HOANG, D.
Vydáno
3. 11. 2016
Nakladatel
Elsevier GmbH
ISSN
0030-4026
Periodikum
OPTIK
Ročník
127
Číslo
4
Stát
Spolková republika Německo
Strany od
1
Strany do
7
Strany počet
BibTex
@article{BUT129430, author="Viet-Thanh {Pham} and Jafari {Sajad} and Christos {Volos} and Tomáš {Götthans} and Xiong {Wang} and Duy {Vo Hoang}", title="A chaotic system with rounded square equilibrium and with no-equilibrium", journal="OPTIK", year="2016", volume="127", number="4", pages="1--7", doi="10.1016/j.ijleo.2016.10.100", issn="0030-4026" }