Detail publikace

Vehicle Re-Identification for Automatic Video Traffic Surveillance

ZAPLETAL, D. HEROUT, A.

Originální název

Vehicle Re-Identification for Automatic Video Traffic Surveillance

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

This paper proposes an approach to the vehicle re-identification problem in a multiple camera system.  We focused on the re-identification itself assuming that the vehicle detection problem is already solved including extraction of a full-fledged 3D bounding box. The re-identification problem is solved by using color histograms and histograms of oriented gradients by a linear regressor.  The features are used in separate models in order to get the best results in the shortest CPU computation time. The proposed method works with a high accuracy (60% true positives retrieved with 10% false positive rate on a challenging subset of the test data) in 85 milliseconds of the CPU (Core i7) computation time per one vehicle re-identification assuming the fullHD resolution video input. The applications of this work include finding important parameters such as travel time, traffic flow, or traffic information in a distributed traffic surveillance and monitoring system.

Klíčová slova

vehicle re-identification, traffic monitoring, automatic traffic surveillance

Autoři

ZAPLETAL, D.; HEROUT, A.

Vydáno

30. 6. 2016

Nakladatel

IEEE Computer Society

Místo

Las Vegas

ISBN

978-0-7695-4989-7

Kniha

International Workshop on Automatic Traffic Surveillance (CVPR 2016)

Strany od

1568

Strany do

1574

Strany počet

7

BibTex

@inproceedings{BUT130978,
  author="Dominik {Zapletal} and Adam {Herout}",
  title="Vehicle Re-Identification for Automatic Video Traffic Surveillance",
  booktitle="International Workshop on Automatic Traffic Surveillance (CVPR 2016)",
  year="2016",
  pages="1568--1574",
  publisher="IEEE Computer Society",
  address="Las Vegas",
  doi="10.1109/CVPRW.2016.195",
  isbn="978-0-7695-4989-7"
}