Detail publikace
Sequence Summarizing Neural Networks for Spoken Language Recognition
PEŠÁN, J. BURGET, L. ČERNOCKÝ, J.
Originální název
Sequence Summarizing Neural Networks for Spoken Language Recognition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper explores the use of Sequence Summarizing NeuralNetworks (SSNNs) as a variant of deep neural networks(DNNs) for classifying sequences. In this work, it is appliedto the task of spoken language recognition. Unlike other classificationtasks in speech processing where the DNN needs toproduce a per-frame output, language is considered constantduring an utterance. We introduce a summarization componentinto the DNN structure producing one set of language posteriorsper utterance. The training of the DNN is performed byan appropriately modified gradient-descent algorithm. In ourinitial experiments, the SSNN results are compared to a singlestate-of-the-art i-vector based baseline system with a similarcomplexity (i.e. no system fusion, etc.). For some conditions,SSNNs is able to provide performance comparable to the baselinesystem. Relative improvement up to 30% is obtained withthe score level fusion of the baseline and the SSNN systems.
Klíčová slova
Sequence Summarizing Neural Network, DNN,i-vectors
Autoři
PEŠÁN, J.; BURGET, L.; ČERNOCKÝ, J.
Vydáno
8. 9. 2016
Nakladatel
International Speech Communication Association
Místo
San Francisco
ISBN
978-1-5108-3313-5
Kniha
Proceedings of Interspeech 2016
Strany od
3285
Strany do
3289
Strany počet
5
URL
BibTex
@inproceedings{BUT131019,
author="Jan {Pešán} and Lukáš {Burget} and Jan {Černocký}",
title="Sequence Summarizing Neural Networks for Spoken Language Recognition",
booktitle="Proceedings of Interspeech 2016",
year="2016",
pages="3285--3289",
publisher="International Speech Communication Association",
address="San Francisco",
doi="10.21437/Interspeech.2016-764",
isbn="978-1-5108-3313-5",
url="https://www.researchgate.net/publication/307889421_Sequence_Summarizing_Neural_Networks_for_Spoken_Language_Recognition"
}
Dokumenty