Detail publikace

Asymptotic behavior of positive solutions of a discrete delayed equation

BAŠTINEC, J. DIBLÍK, J.

Originální název

Asymptotic behavior of positive solutions of a discrete delayed equation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Denote ${\Z}_s^q:=\{s,s+1,\dots,q\}$ where $s$ and $q$ are integers such that $s\leq q$. Similarly a set ${\Z}_s^{\infty}$ is defined. In the paper the scalar discrete equation with delay \begin{equation} \Delta x(n)=-\left(\frac{k}{k+1}\right)^k \frac{1}{k+1} \left[1+\omega(n)\right] x(n-k) \end{equation} is considered where function $\omega \colon {\Z}_a^{\infty}\to\R $ has a special form, $k\ge1$ is fixed integer, $n\in {\Z}_a^{\infty}$, and $a$ is a whole number. We prove that there exists a positive solution $x=x(n)$ of the equation and give its upper estimation.

Klíčová slova

discrete equation with delay, positive solution,upper estimation

Autoři

BAŠTINEC, J.; DIBLÍK, J.

Vydáno

31. 1. 2017

Nakladatel

STU Bratislava

Místo

Bratislava

ISBN

978-80-227-4650-2

Kniha

Aplimat 2017, proceedings

Číslo edice

1

Strany od

63

Strany do

68

Strany počet

6

BibTex

@inproceedings{BUT133458,
  author="Jaromír {Baštinec} and Josef {Diblík}",
  title="Asymptotic behavior of positive solutions of a discrete delayed equation",
  booktitle="Aplimat 2017, proceedings",
  year="2017",
  number="1",
  pages="63--68",
  publisher="STU Bratislava",
  address="Bratislava",
  isbn="978-80-227-4650-2"
}