Detail publikace
Box clustering segmentation: A new method for vision-based web page preprocessing
ZELENÝ, J. BURGET, R. ZENDULKA, J.
Originální název
Box clustering segmentation: A new method for vision-based web page preprocessing
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper presents a novel approach to web page segmentation, which is one of substantial preprocessing steps when mining data from web documents. Most of the currentsegmentation methods are based on algorithms that work on a tree representation of webpages (DOM tree or a hierarchical rendering model) and produce another tree structure asan output.In contrast, our method uses a rendering engine to get an image of the web page,takes the smallest rendered elements of that image, performs clustering using a customalgorithm and produces a flat set of segments of a given granularity. For the clusteringmetrics, we use purely visual properties only: the distance of elements and their visualsimilarity.We experimentally evaluate the properties of our algorithm by processing 2400 webpages. On this set of web pages, we prove that our algorithm is almost 90% faster than thereference algorithm. We also show that our algorithm accuracy is between 47% and 133%of the reference algorithm accuracy with indirect correlation of our algorithms accuracyto the depth of inspected page structure. In our experiments, we also demonstrate theadvantages of producing a flat segmentation structure instead of an hierarchy.
Klíčová slova
box clustering, graph clustering, vision-based page segmentation, VIPS
Autoři
ZELENÝ, J.; BURGET, R.; ZENDULKA, J.
Vydáno
16. 2. 2017
ISSN
0306-4573
Periodikum
INFORMATION PROCESSING & MANAGEMENT
Ročník
53
Číslo
3
Stát
Spojené království Velké Británie a Severního Irska
Strany od
735
Strany do
750
Strany počet
16
URL
BibTex
@article{BUT133487,
author="Jan {Zelený} and Radek {Burget} and Jaroslav {Zendulka}",
title="Box clustering segmentation: A new method for vision-based web page preprocessing",
journal="INFORMATION PROCESSING & MANAGEMENT",
year="2017",
volume="53",
number="3",
pages="735--750",
doi="10.1016/j.ipm.2017.02.002",
issn="0306-4573",
url="http://www.sciencedirect.com/science/article/pii/S0306457316301169"
}
Dokumenty