Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HOMOLIAK, I. BREITENBACHER, D. HANÁČEK, P.
Originální název
Convergence Optimization of Backpropagation Artificial Neural Network Used for Dichotomous Classification of Intrusion Detection Dataset
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
There are distinguished two categories of intrusion detection approaches utilizing machine learning according to type of input data. The first one represents network intrusion detection techniques which consider only data captured in network traffic. The second one represents general intrusion detection techniques which intake all possible data sources including host-based features as well as network-based ones. The paper demonstrates various convergence optimization experiments of a backpropagation artificial neural network using well know NSL-KDD 1999 dataset, and thus, representing the general intrusion detection. Experiments evaluating usefulness of stratified sampling on input dataset and simulated annealing employed into the backpropagation learning algorithm are performed. Both techniques provide improvement of backpropagation's learning convergence as well as classification accuracy. After 50 training cycles, classification accuracy of 84.20% is achieved when utilizing stratified sampling and accuracy of 86.5% when both stratified sampling and simulated annealing are used. In contrast, the backpropagation by itself reaches only 76.63% accuracy. Comparing to state-of-the-art work introducing the NSL-KDD dataset, there is achieved accuracy higher about 4.5%.
Klíčová slova
artificial neural network, backpropagation, data mining, intrusion detection
Autoři
HOMOLIAK, I.; BREITENBACHER, D.; HANÁČEK, P.
Vydáno
1. 3. 2017
ISSN
1796-203X
Periodikum
Journal of Computers
Ročník
12
Číslo
2
Stát
Čínská lidová republika
Strany od
143
Strany do
155
Strany počet
13
URL
http://www.jcomputers.us/vol12/jcp1202-06.pdf
BibTex
@article{BUT133490, author="Ivan {Homoliak} and Dominik {Breitenbacher} and Petr {Hanáček}", title="Convergence Optimization of Backpropagation Artificial Neural Network Used for Dichotomous Classification of Intrusion Detection Dataset", journal="Journal of Computers", year="2017", volume="12", number="2", pages="143--155", doi="10.17706/jcp.12.2.143-155", issn="1796-203X", url="http://www.jcomputers.us/vol12/jcp1202-06.pdf" }