Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SVOBODA, P. HRADIŠ, M. MARŠÍK, L. ZEMČÍK, P.
Originální název
CNN for license plate motion deblurring
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work we explore the previously proposed approach of direct blind deconvolution and denoising with convolutional neural networks (CNN) in a situation where the blur kernels are partially constrained. We focus on blurred images from a real-life traffic surveillance system, on which we, for the first time, demonstrate that neural networks trained on artificial data provide superior reconstruction quality on real images compared to traditional blind deconvolution methods. The training data is easy to obtain by blurring sharp photos from a target system with a very rough approximation of the expected blur kernels, thereby allowing custom CNNs to be trained for a specific application (image content and blur range). Additionally, we evaluate the behavior and limits of the CNNs with respect to blur direction range and length.
Klíčová slova
Convolutional neural network, Motion blur, Image reconstruction, Blind deconvolution, License plate
Autoři
SVOBODA, P.; HRADIŠ, M.; MARŠÍK, L.; ZEMČÍK, P.
Vydáno
25. 9. 2016
Nakladatel
IEEE Signal Processing Society
Místo
Phoenix
ISBN
978-1-4673-9961-6
Kniha
IEEE International Conference on Image Processing (ICIP)
Strany od
3832
Strany do
3836
Strany počet
4
URL
http://ieeexplore.ieee.org/document/7533077/
BibTex
@inproceedings{BUT133500, author="Pavel {Svoboda} and Michal {Hradiš} and Lukáš {Maršík} and Pavel {Zemčík}", title="CNN for license plate motion deblurring", booktitle="IEEE International Conference on Image Processing (ICIP)", year="2016", pages="3832--3836", publisher="IEEE Signal Processing Society", address="Phoenix", doi="10.1109/ICIP.2016.7533077", isbn="978-1-4673-9961-6", url="http://ieeexplore.ieee.org/document/7533077/" }